432. Estimation and Purification of β -Naphthylamine in the Presence of a-Naphthylamine, and Properties of some Sulphonyl Derivatives.

By HERBERT H. HODGSON and ERNEST W. SMITH.

THE solubilities of p-toluenesulphon- α - and - β -naphthalide in 2% aqueous sodium hydroxide at 16° have been found to be 125 g. and 3 g. per litre respectively; the β -naphthalide is practically insoluble in 10% sodium hydroxide solution. In striking contrast, the solubilities of p-toluenesulphon- α - and - β -naphthalide in 2% aqueous potassium hydroxide are 85 g. and 66 g. per litre respectively. The difference in solubility has been made the basis of a method for estimating β - in the presence of α -naphthylamine, which depends on the complete precipitation of p-toluenesulphon- β -naphthalide in the presence of a high concentration of sodium ions. There is a limitation, however : when the concentration of p-toluenesulphon- α -naphthalide exceeds 20%, the β -isomeride is only partly precipitated; from the data, it would appear that, for concentrations of the α -naphthalide between 25% and 56%, the solubility of the β -isomeride is almost exactly proportional to the amount of the α -naphthalide in solution.

Experiments on the addition of aqueous potassium hydroxide solutions of p-toluenesulphon- β -naphthalide to solutions containing sodium ions show that sodium can be detected with ease when the concentration is 2% or higher; the precipitate only forms slowly at a lower concentration, but the crystals are larger and better defined.

When an aqueous acid solution containing both α - and β -naphthylamine is gradually neutralised, the β -amine is precipitated first; and the hydrochloride of β -naphthylamine separates initially when a benzene solution of both amines is treated with hydrogen chloride. These facts have been utilised for the purification of β -naphthylamine.

The corresponding salts of *m*-nitrobenzenesulphon- α - and - β -naphthalide do not exhibit the difference in solubility of their *p*-toluenesulphonyl analogues. They form, however, a remarkable series of hydrates. The *sodium* salts both crystallise with 4 molecules of water; the α -compound is scarlet; the β -isomeride is cream-coloured, although its aqueous solution is deep reddish-brown. The *potassium* salt of the α -naphthalide is brick-red, and that of the β -compound is pale yellow; the former is a dihydrate, and the latter a trihydrate. The *barium* salt of *m*-nitrobenzenesulphon- β -naphthalide forms a dihydrate. The anhydrous salts all have definite melting points, indicating them to be co-ordinated compounds.

EXPERIMENTAL.

Preparation of p-Toluenesulphon- α - and - β -naphthalide.—Purified α - or β -naphthylamine (73 g.) was heated with p-toluenesulphonyl chloride (150 g.) and water (400 c.c.) for 2 hours on the water-bath with the gradual addition of sodium carbonate so that the liquid was always just alkaline. The naphthalide was then collected, dissolved (the α -compound in 2% aqueous sodium hydroxide and the β -compound in 2% aqueous potassium hydroxide), and precipitated by carbon dioxide.

Estimation of β - in Presence of α -Naphthylamine.—A mixture of the amines was converted into the mixed *p*-toluenesulphonyl derivatives as described above. These were dissolved by careful heating in 2% aqueous potassium hydroxide (50 c.c. per g. of amine) and the solution was cooled and treated with 20% aqueous sodium hydroxide until precipitation ceased; the sodium salt of the β -naphthalide was removed, and the α -naphthalide precipitated from the filtrate by carbon dioxide. Alternatively, the sodium salt of the β -naphthalide may be precipitated by powdered anhydrous sodium carbonate, vigorously stirred into the solution. The limitation of the method is indicated by the following data, obtained by using 10% or 20% aqueous sodium hydroxide or anhydrous sodium carbonate as precipitant.

10% Aqueous NaOH.		20% Aqueous NaOH.		Anhydrous Na ₂ CO ₃ .	
% a in solution.	$\frac{\% \beta}{\text{precipitated.}}$	% a in solution.	$\frac{8}{9}$ precipitated.	% a in solution.	$\frac{8}{\beta}$ precipitated.
21.0	100.0	25.0	100.0	25.0	100.0
30.0	94.8	30.0	96.6	30.0	100.0
45.0	77.2	40.0	85.5	40.0	90.1
56.0	68.6	50.0	76.8	50.0	81.6
59.7	59.1				
66.6	55.3				

The percentages require a correction of ± 0.2 .

The sodium salt of p-toluenesulphon- β -naphthalide crystallised from water, containing a trace of sodium hydroxide, in long silky needles, m. p. 370° (Found : S, 10·1. $C_{17}H_{14}O_2NSNa$ requires S, 10·0%). On gradual cooling of hot saturated solutions, separation of crystals is sometimes delayed for more than an hour.

The ammonium salt of p-toluenesulphon- β -naphthalide could not be isolated owing to its facile hydrolysis, since ammoniacal solutions when diluted with water always afforded the original naphthalide.

Improved Preparation of 2: 4-Dinitro-1-naphthylamine.—The method of Morgan and Evens (J., 1919, 115, 1129) has been modified as follows: p-toluenesulphon- α -naphthalide (25 g.), dissolved in glacial acetic acid (70 c.c.), was treated with nitric acid (15 c.c.; $d \ 1.42$) at 50°; the temperature rose to 100°. On cooling, the p-toluenesulphon- α -2: 4-dinitronaphthalide separated in pale yellow needles, m. p. 165° (Morgan and Evens, *loc. cit.*, give m. p. 165—166°); yield, 88%. The naphthalide (22 g.) was heated gradually to 80° with 90% sulphuric acid (66 c.c.); when the clear solution was poured into water (750 c.c.), 2: 4-dinitro-1-naphthylamine separated in almost quantitative yield; after recrystallisation from glacial acetic acid it had m. p. 242° (Morgan and Evens, *loc. cit.*, give m. p. 239°).

1856 Hammick and Williams: Complex Formation between

Precipitation of β - in Presence of α -Naphthylamine.—(a) A cold solution of the amines (1 g. of each) in hydrochloric acid (25 c.c.; d 1.16) and water (250 c.c.) was gradually neutralised with aqueous sodium hydroxide, the precipitate being collected in three fractions: (1) 0.2 g., m. p. 102°, almost wholly β -amine; (2) 1.0 g., m. p. 92°, mostly β -amine; (3) 0.5 g., m. p. 41°, mainly α -amine. A method of purifying β -naphthylamine based on these results was carried out as follows: A well-stirred saturated solution of commercial β -naphthylamine (m. p. 102—109°) in dilute hydrochloric acid was gradually precipitated as above until the bulk had separated; m. p. 109—110° (pure β -naphthylamine has m. p. 112°; α -naphthylamine, m. p. 51°).

(b) A cold solution of α - and β -naphthylamine (1 g. of each) in benzene was treated with hydrogen chloride. The first precipitate after basification (0.7 g.) had m. p. 102° and was almost pure β -naphthylamine.

Salts of m-Nitrobenzenesulphon- α - and β -naphthalide.—The sodium salt of the α -compound (prepared with J. H. Crook) crystallised from water as a tetrahydrate in long, iridescent, scarlet needles, which melted in their water of crystallisation at 85° (Found : H₂O, 17·0. C₁₆H₁₁O₄N₂SNa,4H₂O requires H₂O, 17·06%). The crystals lost water at 40° and became pale yellow. The loss was continuous up to 50°, chocolate-brown needles of a stable mono-hydrate then being obtained (Found : H₂O, 4·8. C₁₆H₁₁O₄N₂SNa,H₂O requires H₂O, 4·9%). At 120°, the anhydrous salt was obtained in pale orange needles, m. p. 256° (Found : S, 9·2. C₁₆H₁₁O₄N₂SNa requires S, 9·1%). Above 50° the aqueous solution had a deep reddish-brown colour, indicating that the lower hydrate is stable in solution.

The *potassium* salt of the α -compound crystallised from water as a *dihydrate* in fine brickred needles (Found : H₂O, 8.8. C₁₆H₁₁O₄N₂SK,2H₂O requires H₂O, 8.9%). These lost 2 molecules of water at 120°, leaving the anhydrous salt in pale orange needles, m. p. 232° (Found : S, 8.8. C₁₆H₁₁O₄N₂SK requires S, 8.7%). Solutions of the sodium and potassium salts of *m*-nitrobenzenesulphon- α -naphthalide are readily hydrolysed by aqueous caustic alkali with separation of pure α -naphthylamine.

m-Nitrobenzenesulphon- β -naphthalide, prepared similarly to the p-toluenesulphonyl analogue above, crystallised from alcohol in pale cream needles, m. p. 166 5° (Found : S, 9.8. C14H12O4N2S requires S, 9.7%). The sodium salt crystallised from its deep reddish-brown solution in water as a tetrahydrate in pale cream micro-needles, m. p. ca. 77° (Found : H₂O, 17.0. $C_{16}H_{11}O_4N_2SNa,4H_2O$ requires H_2O , 17.06%), which lost 3 molecules of water at 60°, giving pinkish micro-needles of a monohydrate (Found : H₂O, 4.9. C₁₆H₁₁O₄N₂SNa,H₂O requires H₂O, 4.9%), and became anhydrous at 120°, forming pale yellow needles, m. p. 290° (Found : S, 9.2. $C_{16}H_{11}O_4N_2SNa$ requires S, 9.1%). The *potassium* salt crystallised from its deep reddish-brown aqueous solution as a trihydrate in pale yellow micro-needles, m. p. ca. 70° (Found : H_2O , 12.8. $C_{16}H_{11}O_4N_2SK$, $3H_2O$ requires H_2O , 12.9%), which lost 2 molecules of water at 60°, forming pink-orange micro-needles of a monohydrate (Found : H₂O, 4.5. C₁₆H₁₁O₄N₂SK,H₂O requires H_2O , 4.6%), and a further molecule at 120° , giving pale yellow needles of the anhydrous salt, m. p. 240° (Found : S, 8.8. C₁₆H₁₁O₄N₂SK requires S, 8.7%). Both the sodium and the potassium salt tend to separate from concentrated solutions as deep red liquids, which may remain fluid for 2-3 days before setting to pale yellow solids. The barium salt crystallised from water in pale orange needles of a *dihydrate* (Found : H₂O, 4·3. C₃₂H₂₂O₈N₄S₂Ba,2H₂O requires H_2O , $4\cdot4\%$), which became anhydrous at 120° as light brown needles; these charred on melting at ca. 280° (Found : N, 7.2. $C_{32}H_{22}O_8N_4S_2Ba$ requires N, 7.1%).

The authors thank the Imperial Chemical Industries, Ltd. (Dyestuffs Group), for various gifts.

TECHNICAL COLLEGE, HUDDERSFIELD.

[Received, August 28th, 1935.]